1. An object of mass \(m \) starts moving from rest at a constant acceleration. After \(t \) seconds, a distance \(d \) is covered. What is the kinetic energy of the object at that moment? (Check all that ARE correct).

\((b) \ K = mad \)

\((g) \ K = 2m\left(\frac{d}{t}\right)^2 \)

Remember that \(K = \frac{1}{2}mv^2 \). So if we want to know \(K \) after \(t \) seconds, we need to find \(v \) at this time. Note that we are given acceleration, \(a \). We use

\[v_f^2 = v_0^2 + 2ad \]

Since \(v_0 = 0 \), we have that \(v_f^2 = 2ad \). Thus, \(K = \frac{1}{2}m(2ad) = mad \). So (b) is correct.

Next, we try to figure out if any of the formulas involving \(t \) are correct. So we use

\[d = v_0t + \frac{1}{2}at^2 \]

Once again, \(v_0 = 0 \), so

\[d = \frac{1}{2}at^2 \]

If we multiply both sides by \(d \), we get

\[d^2 = \frac{1}{2}adt^2 \]

Solving for \(ad \) on the right gives

\[2 \frac{d^2}{t^2} = ad \]

Plugging this into (b) gives (g).

2. A block of mass \(m \) is at rest at the top of a ramp of vertical height \(h \). The block starts to slide down the frictionless ramp and reaches a speed \(v \) at the bottom. If a block of mass \(2m \) were to reach the same speed \(v \) at the bottom, it would need to slide down the ramp starting at the height of:

\((b) \ h \)

So the only work done is that by gravity. If we look at example 7.2, we know that \(W = mgh \). So for the first block, we have \(mgh = \frac{1}{2}mv^2 \). For the second block, we have \(2mgh = \frac{1}{2}(2m)v^2 \). Solving for \(h \) in both of these yields the same result. Thus \(h \) is the correct answer.