A function \(f(x, y) \) is said to be homogeneous of degree \(n \) if \(f(tx, ty) = t^n f(x, y) \) for all \(t \). Here \(n \) is a positive integer. Homogeneous functions are very important in the study of elliptic curves and cryptography.

1. Show that the function \(r(x, y) = 4xy^6 - 2x^3y^4 + x^7 \) is homogeneous of degree 7.

\[
r(tx, ty) = 4txt^6 y^6 - 2t^3x^3t^4y^4 + t^7 x^7 = t^7 r(x, y).
\]

2. Give a nontrivial example of a function \(g(x, y) \) which is homogeneous of degree 9.

Answers will vary.

3. Show that if \(f(x, y) \) is homogeneous of degree \(n \) and sufficiently differentiable, then \(f(x, y) \) satisfies the equation

\[
x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = nf(x, y).
\]

(Hint: let \(X = tx \) and \(Y = ty \) and take the derivative with respect to \(t \) of the equation \(f(tx, ty) = t^n f(x, y) \) and consider the case of \(t = 1 \).)

Using the hint, we have

\[
\frac{\partial}{\partial t} f(X, Y) = \frac{\partial}{\partial t} t^n f(x, y),
\]

where

\[
\frac{\partial}{\partial t} f(X, Y) = \frac{\partial f(X, Y)}{\partial X} \frac{\partial X}{\partial t} + \frac{\partial f(X, Y)}{\partial Y} \frac{\partial Y}{\partial t} = \frac{\partial f(X, Y)}{\partial X} x + \frac{\partial f(X, Y)}{\partial Y} y
\]

and

\[
\frac{\partial}{\partial t} t^n f(x, y) = nt^{n-1} f(x, y).
\]

Setting these two equal gives

\[
\frac{\partial f(X, Y)}{\partial X} x + \frac{\partial f(X, Y)}{\partial Y} y = nt^{n-1} f(x, y).
\]

Notice that if \(t = 1 \), then \(X = x \) and \(Y = y \), therefore

\[
\frac{\partial f(x, y)}{\partial x} x + \frac{\partial f(x, y)}{\partial y} y = n^{n-1} f(x, y).
\]

4. Using the assumptions in problem 3, show that \(f(x, y) \) also satisfies

\[
x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial x^2} = n(n-1) f(x, y).
\]

Here we simply take another time derivative:

\[
\frac{\partial}{\partial t} \left(\frac{\partial f(X, Y)}{\partial X} x + \frac{\partial f(X, Y)}{\partial Y} y \right) = \frac{\partial}{\partial t} nt^{n-1} f(x, y),
\]

where

\[
\frac{\partial}{\partial t} \left(x \frac{\partial f(X, Y)}{\partial X} \right) = x \left[\frac{\partial^2 f(X, Y)}{\partial X^2} \frac{\partial X}{\partial t} + \frac{\partial^2 f(X, Y)}{\partial X \partial Y} \frac{\partial Y}{\partial t} \right] = x \left[\frac{\partial^2 f(X, Y)}{\partial X^2} x + \frac{\partial^2 f(X, Y)}{\partial X \partial Y} y \right] = x^2 \frac{\partial^2 f(X, Y)}{\partial X^2} + xy \frac{\partial^2 f(X, Y)}{\partial X \partial Y}.
\]
Similarly,
\[
\frac{\partial}{\partial t} \left(y \frac{\partial f(X, Y)}{\partial Y} \right) = y \left[\frac{\partial^2 f(X, Y)}{\partial Y^2} \frac{\partial Y}{\partial t} + \frac{\partial^2 f(X, Y)}{\partial Y \partial X} \frac{\partial X}{\partial t} \right] \\
= y \left[\frac{\partial^2 f(X, Y)}{\partial Y^2} y + \frac{\partial^2 f(X, Y)}{\partial Y \partial X} x \right] \\
= y^2 \frac{\partial^2 f(X, Y)}{\partial Y^2} + xy \frac{\partial^2 f(X, Y)}{\partial Y \partial X}.
\]

But notice that
\[
\frac{\partial^2 f(X, Y)}{\partial X \partial Y} = \frac{\partial^2 f(X, Y)}{\partial Y \partial X},
\]

therefore,
\[
\frac{\partial}{\partial t} \left(\frac{\partial f(X, Y)}{\partial X} x + \frac{\partial f(X, Y)}{\partial Y} y \right) = x^2 \frac{\partial^2 f(X, Y)}{\partial X^2} + 2xy \frac{\partial^2 f(X, Y)}{\partial X \partial Y} + y^2 \frac{\partial^2 f(X, Y)}{\partial Y^2}.
\]

Next, the left hand side:
\[
\frac{\partial}{\partial t} n t^{n-1} f(x, y) = n(n-1)t^{n-2} f(x, y).
\]

Setting these equal we have
\[
x^2 \frac{\partial^2 f(X, Y)}{\partial X^2} + 2xy \frac{\partial^2 f(X, Y)}{\partial X \partial Y} + y^2 \frac{\partial^2 f(X, Y)}{\partial Y^2} = n(n-1)t^{n-2} f(x, y).
\]

Once again, when \(t = 1 \), one arrives at
\[
x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2} = n(n-1)f(x, y).
\]