CATCHING FALLING STARS: A HUMAN RESOURCE RESPONSE TO SOCIAL CAPITAL’S DETRIMENTAL EFFECT OF INFORMATION OVERLOAD ON STAR EMPLOYEES

JAMES B. OLDROYD
SHAD S. MORRIS
The Ohio State University

Because star employees are more visible and productive, they are likely to be sought out by others and develop an information advantage through their abundant social capital. However, not all of the information effects of stardom are beneficial. We theorize that stars’ robust social capital may produce an unintended side effect of information overload. We highlight the role of human resource management in minimizing the effects of information overload for stars, and we discuss avenues for future research.

Human resource (HR) scholars have argued that some employees are more valuable than others (Becker & Huselid, 2006; Hausknecht, Rodda, & Howard, 2009; Lepak & Snell, 1999). Consistent with a resource-based view of the firm, the highest-performing employees create disproportionate value, providing a rare but vital opportunity for an organization to increase its competitive advantage through human capital (Barney, 1991; Barney & Wright, 1998; Lepak & Snell, 2002). Alternatives such as hiring a greater number of average performers or enhancing nonhuman assets are not adequate substitutes for the value created by top performers (Eccles & Crane, 1988; Kelley & Caplan, 1993; Lepak, Takeuchi, & Snell, 2003; Narin, 1993). For example, in professional service industries an organization’s top performers both generate the bulk of that organization’s business and constitute its core knowledge assets (Eccles & Crane, 1988). Studies of scientists and academic researchers have consistently found that employees at the top of the performance distribution are many times more valuable than their lower-performing colleagues (e.g., Cole & Cole, 1973; Ernst, Leptein, & Vitt, 2000; Narin & Breitzman, 1995).

As a result of their uniquely valuable human capital contributions, top performers are often the most widely recognized employees in a given organization (Trevor, Hausknecht, & Howard, 2007; Trevor & Nyberg, 2008). Top performers are also more visible than their peers in internal and external labor markets (Groysberg, Lee, & Nanda, 2008), as evidenced by increased interest in hiring practices regarding the highest-performing employees (Gardner, 2005; Lazear, 1986). Research on the professional service industry has demonstrated that top performers receive particular attention from competing organizations, which tend to view their achievements as valuable assets ripe for acquisition (Greenwood, Hinings, & Brown, 1990).

When top performers possess high internal and external visibility, they are considered to be stars. Following Groysberg and colleagues (2008), we define “stars” as employees who (1) demonstrate superior performance in relation to others in their respective organizations and (2) are highly visible in the labor market. These unique characteristics often endow stars with what sociologists call a “cumulative advantage”—namely, their productive resources increase at a rate exponentially greater than their less visible and less valuable peers (Cole & Cole, 1973; Zuckerman, 1977). For example, stars in science fields find it easier to acquire the resources necessary to facilitate research, such

We gratefully acknowledge the excellent support of David Lepak throughout the revision process and thank our anonymous reviewers for their insightful comments and suggestions. James Oldroyd also thanks the generous support of a Sungkyunkwan University summer research grant in supporting this project. Finally, we thank to Jay Anand, Tai-Young Kim, and Steffanie Wilk for their helpful comments on this work.
as colleagues seeking collaboration, cadres of highly capable students, and access to databases (Zuckerman & Merton, 1972). Consequently, they are likely to find themselves embedded in a virtuous cycle: they meet with increased access to information resources and opportunities to increase their productivity, which lead to increased visibility in the labor market, which, in turn, results in even more resources and opportunities (Allison, Long, & Krauze, 1982).

From a relational perspective, one by-product of stardom is the abundance of social capital, defined here as the structure of relationship networks and information available to an individual (Bourdieu, 1986; Burt, 1992). In this regard, a higher number of network connections or potential sources of information increase an individual’s social capital (Baker, 1990). Nahapiet and Ghoshal state that “the central proposition of social capital theory is that networks of relationships constitute a valuable resource” (1998: 243).

In other words, the value of network ties, as well as the social capital that comes with them, derives primarily from privileged access to information and opportunities (Burt, 1997). Because star employees are highly visible in the labor market and others are likely to seek relationships with them, stars will likely develop exponentially high levels of social capital (Burkhardt & Brass, 1990; Groysberg et al., 2008; Kang, Morris, & Snell, 2007). For instance, through a series of studies, Groysberg (2010) has demonstrated that one of the key factors in stars’ success is not only their unique and uniquely valuable human capital but also their social capital—that is, the relationships they possess with others in the organization.

While an abundance of social capital can positively impact stars’ performance, not all of the effects of abundant social capital are positive (Adler & Kwon, 2002). For instance, scholars are beginning to explore some potential limitations of social capital due to structural challenges (Arenas, Díaz-Guilera, & Guimerà, 2001; Burt, 1997; Dodds, Muhamad, & Watts, 2003; Guimerà, Díaz-Guilera, Vega-Redondo, Cabrales, & Arenas, 2002; Watts, 2004), differential effects of specific network contexts (Cummings & Cross, 2003; Xiao & Tsui, 2007), links to negative groups (Lechner, Frankenberger, & Floyd, 2010), limited control (Buskens & van der Rijt, 2008; Ryall & Sorenson, 2007), and overembeddedness (Garigu & Benassi, 2000). All of these factors represent some form of structural constraint in which ties are not as helpful as they might otherwise be, either because they are redundant or because they offer limited access to novel information. However, while such structural factors limiting the value of social capital are important to provide a more robust picture of organizational trials and successes, they do not reflect a serious challenge created by the abundant social capital amassed by star employees.

We uniquely highlight that because of their high visibility and performance status, stars are likely to build up an abundance of ties leading to nonredundant information flows. But, by the very nature of their unique positions, stars are less likely to face structural constraints and are more likely to amass exponentially high levels of social capital. As a result, they are much more susceptible to another form of constraint than are their average-performing peers: information overload. In a state of overload, cognitive limitations may constrain the value of a star’s social capital; if the information load goes unmanaged for long periods of time, the star may stumble and, ultimately, fall (Herbig & Kramer, 1994; Van Gerven, Paas, Tuovinen, & Tabbers, 2003). Thus, it is important to generate a greater understanding of how and when social capital adversely affects the performance of both the star employee and the organization in which he or she is embedded. In so doing we posit that a star is likely to fall in the absence of specific individual, organizational, and network-wide actions that help manage the continual increase in both the information given to and the demands made of the star. Using a process approach to theory development, we focus on this important but previously unexplored boundary condition of the value of social capital, one that applies principally to star employees.

The conditions under which some stars shine and others fall have long proven difficult to explain, let alone produce (cf. Groysberg, 2010). We begin by reviewing the link between social capital and star employees, emphasizing that because of the affiliatory nature of network formation, stars are likely to have exponentially higher levels of social capital than their less visible and less highly performing peers. We then discuss how this abundance of social capital may unintentionally result in information...
overload for star employees. We go on to explore the implications of a curvilinear theory of social capital on the performance of star employees and their organizations, highlighting the boundary conditions of our theory and explicating when information overload may or may not adversely affect star employees with abundant social capital. We then highlight strategic HR management responses, targeted at the individual, organizational, and network level, that might help mitigate the potentially negative side effects of social capital for stars. Finally, we conclude by outlining several ways in which future research can link human resource management, stars, social capital, and information overload.

**STARS’ HUMAN AND SOCIAL CAPITAL**

Stars are employees who consistently and substantially perform better than others in their organizations and are also highly visible in their respective labor markets (Groysberg et al., 2008). Stars are common across industries and are frequent topics of discussion in knowledge-based industries where organizational value is largely tied to employees’ individual abilities and potential for coordination. The work differential between stars and nonstars is vast. For example, as Groysberg notes:

The phenomenon of stardom—of performers whose productivity massively outstrips that of their colleagues—is well documented. One study found that the top 1 percent of employees in highly complex jobs outperform average performers by 127 percent. Another reported an eight-to-one productivity difference between star computer programmers and average programmers. The top 1 percent of inventors was found to be five to ten times as productive as average inventors (2010: 616).

Zucker, Darby, and Armstrong (1998) found, similarly, that in the biotech industry stars represent only three-quarters of 1 percent of scientists, but they account for 17.3 percent of published articles. Thus, star scientists publish almost twenty-two times as many articles as their average colleagues.

The value that stars create for knowledge-based organizations determines both their human and social capital (Groysberg et al., 2008). The rare, intangible resource of a star’s human capital is a key source of competitive advantage for his or her organization (Barney & Wright, 1998; Huselid, 1995; Lepak & Snell, 1999). A star’s firm-specific human capital may include knowledge about how to accomplish complex tasks in a particular organization, how to develop trust among a team of employees, and how to create a sense of commitment to a firm’s success, along with other vital, valuable information (Barney & Hansen, 1994; Conner & Prahalad, 1996).

Strategic HR management researchers recognize the importance of stars’ social capital in the creation of organizational values (e.g., Dess & Shaw, 2001; Wright, Dunford, & Snell, 2001). Because stars have greater access to information, as well as access to avenues for sharing it, they tend to create more value for their organizations (Dess & Shaw, 2001). For instance, in a study of R&D project managers, Allen and Katz (1985) found that star employees are a key source of technical knowledge. Because of this knowledge, organizational colleagues consulted most frequently with star employees, and stars spent significantly more time than their colleagues conferring with those within and outside of their own technical specialties. Similarly, Kang et al. (2007) have argued that top employees create value for organizations via their social relationships with colleagues across departments and functions. These relationships provide access to new information and opportunities that the stars then use to create greater organizational value.

**THE UPWARD SPIRAL OF STARDOM AND INFORMATION OVERLOAD**

The Affiliatory Nature of Social Capital

Recent research in physics (Barabasi & Crandall, 2003), information technology (Ebel, Mielsch, & Bornholdt, 2002), and biology (Jeong, Tombor, Albert, Oltvai, & Barabasi, 2000) indicates that network formation often follows an affiliatory pattern. Rather than forming randomly between actors, associations form by choice, based on the actors’ preferences and what they are searching for or hoping to gain (Newman, 2002). Numerous studies show that affiliatory networks represent trends in social and work life, in which people tend to gravitate toward a few individuals who are key to achieving their objectives (e.g., Newman & Park, 2003). The people who are the “recipients”—that is, the key individuals to whom others gravitate—are
often high-performing and visible actors in these networks.

Because of affiliation, organizational networks are not composed of randomly generated connections. Rather, once stars emerge in an organization, others will tend to gravitate to them, and these new associations will result in a virtuous circle that further increases stars' importance and visibility (Newman, 2002). As a result of their high visibility and strong performance, star employees are likely to be frequently asked for advice and to have influence over and association with others (Burkhardt & Brass, 1990). Because this process is an upward spiral, other employees in the organization are likely to seek out stars once they have achieved visibility, heightening the upward spiral effect. In other words, when employees seek to build new relationships, they are most likely to build those relationships with high-performing, highly visible stars.

Such affiliatory patterns create cumulative advantages for stars. The stars’ prior success increases their future endowments of social capital. This is a mechanism in which social capital and human capital are recursive, with each reinforcing and increasing the other. As other employees form ties with star employees, they, too, try to access their unique human capital or gain access to their robust relationships; thus, the stars’ organizational power and influence increase concurrently (Emerson, 1962).

Using a social network structure approach, Tichy and Tushman (1979) showed that stars play a “linking pin” role since they occupy the core of the organization’s network structure. Additional research has shown that employees who have the highest organizational recognition have greater access to resources, including social prestige and knowledge, from which they might attract others seeking status, information, or money (Bacharach & Lawler, 1980; Foa & Foa, 1974). For instance, as Allen and Katz (1985) noted, stars have robust connections and so can keep up with new developments in their fields, further increasing their human capital. As a result, stars are frequently embedded in a virtuous cycle of social capital development, in which higher social capital (i.e., more associations) increases their appeal, causing more and more people to gravitate toward them.

Because of the nature of affiliatory tie formation, stars are likely to be connected to many more individuals than average employees; this connection pattern follows a power-law (Pareto) distribution of ties. Thus, rather than simply having a few more ties than average employees, stars are likely to have exponentially more associations and the concomitant social capital than average employees. As a consequence, stardom does not provide a marginal increase in social capital over that of the average employee but, rather, an exponential increase.

Underscoring the difference between the marginal increase and the exponential increase in social capital is the difference between random and affiliatory networks. This is a vital point when investigating how social capital affects information flow to star employees. Figure 1 illustrates this point. In Figure 1 we model four different networks of 100 people each. Two of these networks have an average of five ties per actor, and two have an average of ten ties per actor. We compare the difference in both types of network structures for networks formed in a random versus affiliatory manner. Both the five-tie and ten-tie networks consist of 100 people, and each of the networks has an equal average number of ties. However, the distribution of ties significantly differs between the networks. On the one hand, in the first network (which has an average of five ties per actor) and third network (which has an average of ten ties per actor), the distributions follow a random pattern of relationship formation. On the other hand, in the second network (which has five ties) and fourth network (which has ten ties), the distributions follow an affiliatory, or preferential, model. In the affiliatory networks the majority of the relationships are linked to a small number of stars, concentrated in the center of the network. In the random networks the ties are more evenly dispersed across the network.

Figure 2 quantifies this difference between the random and affiliatory networks. In this figure we construct a measure of “in-degree centrality” for each actor. In-degree centrality is a measure of the incoming ties directed toward an actor. Our results show that in affiliatory networks the most central star employees have more than two-and-a-half times as many asso-

---

1 Network theorists also refer to affiliatory networks as scale-free networks (e.g., Barabasi & Crandall, 2003).
FIGURE 1
Random versus Affiliatory Network Graphs

Random 100-node network with average in-degree centrality of 5

Affiliatory 100-node network with average in-degree centrality of 5

Random 100-node network with average in-degree centrality of 10

Affiliatory 100-node network with average in-degree centrality of 10

FIGURE 2
Centrality in Random and Affiliatory Networks

Comparison of the in-degree centrality for each node in the random and affiliatory network of 100 actors with an average in-degree centrality of 5 ties. The highest in-degree centrality for actors in the random network is 10, while the highest in-degree centrality for actors in the affiliatory network is 26.

Comparison of the in-degree centrality for each node in the random and affiliatory network of 100 actors with an average in-degree centrality of 10 ties. The highest in-degree centrality for actors in the random network is 27, while the highest in-degree centrality for actors in the affiliatory network is 46.

a In-degree centrality is a sum of the ties that are directed toward an actor.
ciations as those most central in random networks.

Figure 3 takes this analysis even further, demonstrating that the stars’ network ties in affiliatory networks are often exponentially higher than others’ ties in the same network. For both the random and affiliatory examples, we have calculated the percentage of all ties connected to each actor in the network. In our comparison, for instance, we found that the top 10 percent of employees’ in-degree centrality in the random network accounts for 18 percent of the network’s in-degree ties. The top 10 percent of actors in the affiliatory network, however, account for over 40 percent of ties. We see that the magnitude of this effect intensifies as we narrow our definition of stars to fewer and fewer actors. For instance, the most central actor in a random network receives just 2 percent of the in-degree ties, whereas in an affiliatory network the individual occupying that position receives 6 percent of ties, or three times the number of ties. Because organizational networks follow an affiliatory pattern and stars are likely to be key players in these networks, we posit the following.

Proposition 1: Because of their high performance and high visibility, star employees are likely to have exponentially more social capital than average employees.

Stars and Information Flow

Recent research in the information sciences has repeatedly demonstrated that communication networks follow a power-law distribution—namely, key actors in a given network are likely to both receive and send more information than nonkey actors. Since stars are likely to have an abundance of social capital, they have access to numerous contacts, increasing the average amount of information they receive (Groysberg & Lee, 2008; Lechner et al., 2010). As a result, stars are not only more likely to have more associations than average employees but are more likely to actively communicate using these ties. This may be due to their colleagues’ need to access their human capital, an effect demonstrated through empirical studies of actors with high human capital. For instance, Burkhardt and Brass (1990) found that experts are more likely to be sought out in organizations than nonexperts.

Furthermore, once a star has obtained information, abundant social capital may enable

2 Baeza-Yates, Boldi, and Castillo (2006) have demonstrated the affiliatory nature of web page links, showing that regardless of the function used to identify page rank, the distribution is likely to follow a power-law function indicating that a few key nodes (or sources of information) are exponentially more likely to be active.
him or her to leverage his or her structural position, facilitating the flow of new and valuable information across structural boundaries or gaps in the network space. Burt notes that those with abundant social capital often have a “say in whose interests are served,” and such an individual will act as an “entrepreneur in the literal sense of the word—a person who adds value by brokering the connection between others” (1997: 342).³

Here we compare the volume of information stars are likely to receive with the volume of information average employees in the affiliatory networks are likely to receive. In this case we hold flow constant per actor (a conservative measure), finding that stars (who constitute the top 1 percent of actors) have nearly nine times as many ties as average employees. Assuming that there is an average of five ties present in the network, that each tie generates the same information load, and that both incoming and outgoing information flows emerge from each tie, we project that stars will receive eighteen times as much information as average employees. Assuming that there is an average of five ties present in the network, that each tie generates the same information load, and that both incoming and outgoing information flows emerge from each tie, we project that stars will receive eighteen times as much information as average employees. As the number of ties increases, this load increases in a power-law manner. In addition, it is likely that attention paid to a star is even greater, because stars are not only more likely to have more connections but are also more likely to be involved in active ties (in the form of requests, questions, etc.). This interactive effect of combining the number and volume of flow clearly indicates that stars are likely to receive and send an abundance of information. Hence, we posit the following.

**Proposition 2: Because of their abundant social capital, star employees are likely to send and receive exponentially more information than average employees.**

³ Several studies demonstrate a strong link between performance and actors who facilitate the connection of other actors in the network. Some of these advantages include prestige (Allen & Cohen, 1969), early job promotion for themselves and their subordinates (Burt, 1997; Katz & Tushman, 1983; Podolny & Baron, 1997), higher salaries (Seibert, Kraimer, & Liden, 2001), and better job performance. Each of these advantages is distinct to star employees (Brass, 1984, 1985).

---

**Stars and Information Overload**

Individuals process information, according to Sternberg (1977: 317), by turning information into intelligence through a process of “components.” Component processing includes activities such as coding, inferring, mapping, applying, and responding to information. While individuals vary in their ability to process information owing to their cognitive abilities (Ackerman, 1986; Kanfer & Ackerman, 1989; Locke, 1965), instructional design scholars note that all individuals rely on short-term or working memory to process information on a day-to-day basis (Baddeley, 1986; Miller, 1956). Individuals are conscious of and can monitor only the content of their working memories. Because information processing requires working memory, information loads that exceed its capacity may overwhelm an individual’s information processing activities. These limitations of working memory are widely known and accepted (Sweller, van Merrienboer, & Paas, 1998). As stated by Sweller et al.:

> Because working memory is most commonly used to process information in the sense of organizing, contrasting, comparing, or working on that information in some manner, humans are probably only able to deal with two or three items of information simultaneously when required to process rather than merely hold information. . . . it is this factor that provides a central claim of cognitive load theory (1998: 252–253).

Much of the research on social capital assumes a linear relationship between information flow and stardom or highly central positions such that the more information an employee receives, the better his or her performance will be (e.g., Burt, 1992, 1997). Information processing theory further clarifies our understanding of the potential risks of information overload on those employees with high levels of social capital. This theory asserts that individuals benefit from the receipt of information, but only until they reach a point at which they are unable to process additional incoming information (O’Reilly, 1980; Tushman & Nadler, 1978). Beyond this point, additional information becomes a liability (Eppler & Mengis, 2004). In a state of overload, an individual’s ability to perform rapidly declines (Chewning & Harrell, 1990). In any given context, then, if the amount of information an individual receives exceeds his or her information processing ability, the extra information may harm performance (Boone, van
While all organizational actors face some risk of information overload, a star’s robust and constantly increasing social capital places him or her in a unique position that is likely to lead to information overload if not carefully managed. Moreover, a star’s robust social capital not only likely burdens him or her with extreme levels of information flow but also places the star in a position where other employees are likely to seek advice and expertise and, in so doing, cause frequent interruptions that compromise the star’s ability to complete tasks (Rudolph & Repenning, 2002). Grove (1983: 67), for example, described the constant request for information and advice received by managers as “the plague of managerial work.” Similarly, Perlow (1999) showed that the frequent coworker interruptions experienced by highly visible software engineers ultimately led to “a time famine,” wherein engineers had too many information requests and could not properly perform their jobs.

Such frequent information requests require extra information processing activity and often necessitate immediate attention. These requests can also interrupt information processing focused on the task at hand (Cellier & Eyrolle, 1992; Kirmeyer, 1988). In an organizational setting, additional attention and visibility can increase the amount of information requests, decreasing an employee’s attention and ability to concentrate on the specific requests themselves (Oldham, Kulik, & Stepina, 1991; Perlow, 1999). Moreover, scholars such as Jett and George (2003) have shown that information technology has increased the number of interruptions from information requests, with email and other forms of electronic communication heightening the frequency with which people can interact and interrupt one another at work (e.g., Cutrell, Czerwinski, & Horvitz, 2001; Speier, Valacich, & Vessey, 1999).

In line with other studies of network structure and load (e.g., Watts, Dodds, & Newman, 2002), we suggest that even when star employees have relatively low cognitive costs associated with processing information for each message, they are frequently overloaded by the cumulative burden created by their exponential amounts of social capital. In Figure 4 we show star employees’ cumulative information burden for an information flow of five and ten messages per network contact. Because of the nature of affiliatory networks, and assuming only five incoming and

---

4 Network scholars have demonstrated that affiliatory networks are robust against random breakdowns. However, they are easy to disrupt with focused attacks (of overload) on the most highly connected actors. In other words, when stars are overloaded, their failure to process information can easily disrupt the network (Cohen, Havlin, & ben-Avraham, 2002).

FIGURE 4
Information Load in an Affiliatory Network with Average Centrality of Five Actors at Five and Ten Messages per Actor
outgoing communications per tie, we find that stars carry an information burden of over 450 messages, as compared with 25 messages for the average employee.

Because exponentially higher levels of social capital are likely to burden star employees with information, we posit the following.

**Proposition 3:** Because of their extreme level of information flow, stars are likely to experience information overload.

### The Individual Performance Effects of Stars’ Information Overload

A star’s performance is likely to be hindered by this deluge of information. Information processing studies have clearly demonstrated a link between effective information processing and employee performance (Eppler & Mengis, 2004). Scholars exploring information overload have emphasized that the consequences of information overload not only act as a limit to the employees’ performance but actually may decrease the overall performance of the individual experiencing overload (e.g., Jacoby, 1977; Meier, 1963). For instance, Malhotra noted that although consumers develop mechanisms for limiting their intake of information, their limited processing capacity can become cognitively overloaded if they attempt to process “too much” information in a limited time, and this can result in confusion, cognitive strain, and other dysfunctional consequences (1984: 437).

Similarly, in his study of library workers, Meier (1963) found that overwhelmed individuals had to completely stop the information flow they received until they could catch up on their processing tasks. Oskamp (1965) also found that information improves decision-making ability up to a certain point, but when the flow of information exceeds that point, additional information diminishes the person’s decision outcomes. Likewise, Connolly (1977) found that excessive information leads to a decreased accuracy in decision making. Schick, Gorden, and Haka (1990) noted that the burden of information overload leads to confusion, an inability to set priorities, and a deficit in information recall. Overload has also been shown to reduce decision makers’ ability to identify relevant information (Hodge & Reid, 1971; Streufert, 1973). Hence, we posit the following.

**Proposition 4:** As star employees experience information overload, their performance is likely to decrease.

### The Organizational Performance Effects of Stars’ Information Overload

Because stars are required to share their knowledge with others, they are likely to receive many requests for advice and information. Professional service organizations often identify stars as “thought leaders” or “knowledge experts”—people others can turn to for help. Stars are not only identified but often actively put in contact with others, across business and geographic lines, to ensure visibility and accessibility by peers (Lorsch & Tierney, 2002). They are likely to be singled out for formal and informal mentoring responsibilities (Nee, 1988). In fact, as Phillips-Jones (1983) pointed out, most mentoring relationships are informal, incited by admiration for the star or by job demands that require a star’s expertise. Thus, the very mentoring opportunities meant to energize employees can feel like a punishment for success if the programs are not designed to consider the potential for information overload in the case of stars.

Scholars have also argued that organizations often spend the majority of their efforts providing stretch assignments, “special” projects, and development programs solely for star players (Huselid, Beatty, & Becker, 2005). When organizations target these employees, the employees may become overburdened with responsibilities, and this may cause a decrease in their ability to share information and mentor others.

When stars experience information overload, they are likely to become bottlenecks in the organization (Cross & Parker, 2004). In other words, stars who receive too much information will not be able to share their expertise with others in the organization. In this way, information overload may hinder an organization’s ability to leverage a star’s human capital. Consequently, information overload may not only affect both the star’s individual performance but also the organization’s performance on the whole.

Studies of scale-free networks demonstrate the effect of overload for key network nodes. These studies note that an “attack [overwhelming the actor] on the most highly connected nodes of the network” can result in a serious disruption in network flow (Cohen et al., 2002:}
The effects of overload for stars ripple through the system, and a small disruption for a star “suffices to disrupt the net for all” (Cohen et al., 2002: 14).

While information flowing to stars may not be directly proportional to the information they share with others, it is likely to be correlated. As a result, the volume of information sent out by stars can come back to them, adding exponentially to their information load. Figure 5 shows a comparison of the difference in in-flowing, out-flowing, and total flow for actors in random versus affiliatory networks. This highlights that in affiliatory networks stars are likely to shoulder the information burden resulting from both incoming and outgoing ties; overloaded stars will be unable to process and share information.

Limiting stars’ ability to share information also likely limits their ability to provide advice and mentoring to others, both of which are necessary elements in fostering human capital within an organization. For instance, DeLong, Gabarro, and Lees (2007) found that top performers in professional service firms tend to focus too much on satisfying clients, to the point of neglecting their own and others’ personal skill building. Therefore, we propose the following.

*Proposition 5: As stars experience information overload, they are more likely to decrease the amount of valuable information they share with their peers, stifling organizational performance.*

Next, we draw further distinctions between star and average employees. Research has shown that, unlike average workers, star employees have high external visibility, which means they are likely to be able to leave an organization if they feel burdened. Trevor (2001) emphasized this point, noting that star employees’ high performance and visibility lead to high portability. Spence (1973) argued that when employees make investments in their organizations, they increase productivity and are visible to others; thus, competitors note “signals” that these employees possess skills generally applicable across organizations, and such signals invite competitors to attempt to hire these employees (Lazear, 1986), increasing the employees’ likelihood of leaving the organization they initially worked for (Schwab, 1991). In fact, research suggests that star employees’ turnover rate is not significantly affected by nationwide unemployment rates, when firms typically engage in only limited hiring (Lee, Gerhart, Weller, & Trevor, 2008; Trevor & Nyberg, 2008)—their mobility is robust even during economic uncertainty. The “war for talent” literature shows that

**FIGURE 5**

In-Degree, Out-Degree, and Total Degree Centrality for Random and Affiliatory Networks
professional industries typically hire freely from one another and that highly pursued employees often have little loyalty to their employers, conceptualizing loyalty instead as a duty to the larger profession (Gardner, 2005; Greenwood, Oliver, Sahlin, & Suddaby, 2008). Much literature focuses on the mobility of these individuals (e.g., Groysberg et al., 2008; Marx, Strumsky, & Fleming, 2009).

We argue here that when stars are in a state of chronic information overload, they may notice that their performance is suffering and may seek to remedy the situation. With the difficulty of single-handedly managing information overload and the relative ease of moving to another organization, stars are likely to become frustrated and exercise their options to work for other organizations. Moving can provide them with the opportunity to access more resources and face fewer demands on their time and energy.5 Stars experiencing overload and then “shooting” to competitors is a well-understood phenomenon. For example, Tom Rath, head of workplace consulting for Gallup, noted that companies that require stars to share information “can be perceived as piling on. And that’s the quickest way to push that person out the door” (quoted in McGregor, 2010).

When a star employee decides to leave, the organization suffers from the loss of valuable human capital, as well as the loss of social capital. Shaw, Duffy, Johnson, and Lockhart (2005) found that the loss of both human and social capital resulting from turnover is particularly detrimental to an organization’s performance; even when a small number of star employees leave an organization, such a loss has a sharp negative effect on organizational performance. Hence, the extent to which a star’s information load can be effectively managed remains a key strategic concern. As a result, we posit the following.

Proposition 6: When stars experience information overload, they are more likely to leave a given organization, stifling organizational performance.

MANAGING STARDOM AND INFORMATION LOAD

Prior studies have examined how to preserve information flow in scale-free networks; these studies show the importance of focusing on key actors in the networks. For instance, simulations of immunization strategies demonstrate that when a system of random inoculation is utilized, a network remains contagious “even after immunization of most of its nodes” (Cohen et al., 2002: 23). However, when key nodes are immunized, even though only a small fraction of actors receive immunization, this strategic inoculation is sufficient to dramatically halt the spread of infection. Similarly, when HR managers focus on increasing a star’s efficiency and effectiveness, their efforts are likely to have a profound effect in managing the side effects of information overload for the organization as a whole. We suggest that because networks follow a nonrandom pattern, HR strategies should follow suit and take a nonrandom approach to curbing information overload. These strategies should focus on the key individuals in the organization: the stars. We further suggest that when such strategies are absent, stars in these organizations are likely to fall.

How can HR managers reduce the information overload side effects of amassing social capital? To reduce the liabilities of a star’s abundant social capital, HR managers can use tactics that increase stars’ individual processing capacity, concentrate on the organization’s characteristics with respect to information flow, and bolster the structural foundation of the star’s network (Eppler & Mengis, 2004). To demonstrate the effect of these practices, we turn to theories of cognition, HR management, and social networks to examine (1) individual, (2) organizational, and (3) structural conditions that may influence the degree to which stars experience information overload. We highlight that without active management of the information load, star employees will tend to become overloaded with information, which will likely lead to either their fall or their decision to shoot off to other organizations.

Individual Conditions

While information overload is a likely outcome for employees with exponentially high social capital, it is hardly a certainty. Stars have
the power to increase their information processing capacity. Instructional design scholars have demonstrated that individuals’ ability to process information is restricted by limitations in short-term memory (Baddeley, 1986), which allows individuals to process only a few elements before “overloading their capacity and decreasing the effectiveness of processing” (Kalyuga, Ayres, Chandler, & Sweller, 2003: 23). Daft and Huber (1987), Sproull and Kiesler (1991), Whittaker, Swanson, Kucan, and Sidner (1997), Hansen and Haas (2001), and Kostova and Roth (2003) have argued that knowledge sharing is limited by an actor’s inability to act on shared information and to distinguish between reusable and nonusable information.

This limitation with short-term memory can be further mitigated by developing long-term memory, which increases information processing by applying domain-specific knowledge that organizes and categorizes information to aid in decision making. Decision criteria, also known as schemas, increase an individual’s ability to categorize and prioritize information. Information that does not fit into existing schemas (Rumelhart, 1975), scripts (Schank & Abelson, 1977), frames (Minsky, 1975), or categories (Lakoff, 1987) requires additional effort to process, and may even require the adaptation of existing linguistic frameworks or the creation of new ones. Once schemas are created and understood, the information load vastly decreases. Sweller et al. highlight that schemas both bring together multiple elements that can be treated as a single element and allow us to ignore myriads of irrelevant elements. Working memory capacity is freed, allowing processes to occur that otherwise would overburden working memory. Automated schemas both allow fluid performance on familiar aspects of tasks and—by freeing working memory capacity—permit levels of performance on unfamiliar aspects that otherwise might be quite impossible (1998: 258).

For example, Morris et al. (2009) found that when people lack a shared vision or a shared framework of what is important within the organization, much of the information possessed by employees is neither transferred nor processed. To increase stars’ information processing capabilities, then, HR managers should provide them with the opportunity to have diverse workplace experiences, which will enable them to quickly understand subtle nuances of information and share that understanding with others (Tushman & Scanlan, 1981). Furthermore, a more robust exposure to different experiences also increases stars’ transactive memory, honing their ability to locate specific information (Wegner, 1986).

In addition to efforts to increase long-term memory, organizations can also optimize how stars allocate their attention capacities to improve information outcomes (Kanter & Ackerman, 1989). By designating specific times to check email, voicemail, and texts, organizations may reduce the cognitive processing load for stars. These steps standardize processing requirements and reduce interruptions. For instance, star employees may set aside a specific time to check email each day, ignoring it for the rest of the day. In this way stars can focus on information requests and send information when they have time to fully process the information, replying in an efficient, effective manner.

In addition to capability, motivation may affect both information processing (LePine, Colquitt, & Erez, 2000; Sackett, Gruys, & Ellingson, 1998; Witt & Burke, 2002) and knowledge sharing performance (Szulanski, 2000). This

---

6 One strategy for dealing with information overload is to simply ignore much of the information one receives. While ignoring information flow may directly benefit the star by reducing his or her cognitive burden, it will likely undermine cooperation and teamwork in the organization. Groysberg, Lee, and Abrahams note the potential problems of this strategy: “To get the best of your top performers, maintain a “no-jerks” policy: Stars who don’t play well with others won’t benefit you in the long run” (2008). Thus, we assume that encouraging stars to ignore the problem is not a viable solution for the stars or the organization.

7 Although schemas may help stars speed decision making, they may not automatically improve decision outcomes. For instance, Malhotra notes, “When presented with ‘too much’ information, consumers may become confused, so that they are unable to effectively and efficiently process the information, and/or they may adopt some heuristic processing. While consumers may employ heuristics to limit the intake of information, these heuristics may often involve a tradeoff between simplifying and optimizing. As the work by Wright (1975: 62) suggests, ‘simplifying and optimizing are likely to be antagonistic goals.’ Hence, in the context of decision making, it is entirely possible for a consumer to adopt a choice heuristic that may limit cognitive strain but that may not lead to the ‘best’ or even to a satisfactory choice” (1984: 438).
proves to be a serious challenge. As Lorsch and Tierney note:

Employing stars is necessary but insufficient. They must also be aligned; that is, they must behave in ways that move the firm toward its goals. . . . Unfortunately, such behavior is usually an unnatural act. This is particularly true in PSFs [professional service firms], where the professionals' natural independence is compounded by the inherently decentralized nature of the work (2002: 26).

In a network simulation, Tang, Xi, and Ma (2006) showed that the star actors with the most connected nodes who were highly motivated to share information (and not overwhelmed) were nearly twice as effective in facilitating information flow than were stars with average information-sharing aspirations. Thus, by increasing a star's motivation, an organization may induce him or her to dedicate more attention to information processing (Hwang, Kettinger, & Yi, 2010; Kanfer & Ackerman, 1989), dramatically changing information flow in the organization.

Organizations can increase motivation by recognizing and rewarding stars for their efforts. A star's efforts to effectively process and share information are often inadequately rewarded. For example, Perrow (1999) recounted an interview with a star engineer. The engineer was seen by coworkers as highly visible and productive, and, as a result, many people went to this engineer for help.

At one point, the engineer approached the software manager and told him that he was having trouble balancing all the demands for his help and completing his own deliverables. According to the engineer, he was told, 'Do your own work first, and then, if you want to help others, that is your choice, but do it on your own time' (Perrow, 1999: 69).

In this context the star employee was actually discouraged from sharing information with other employees, sending a negative message to employees and decreasing the star's motivation to help others.

Another way to increase a star's motivation is to turn over more control to the star. Scholars argue that top performers who are included in making strategic decisions pay more attention to the information they receive from others (Morrision, Alvarez, Barney, & Molloy, 2010). This specifically occurs for knowledge workers in professional service industries. Furthermore, Gargiulo, Ertug, and Galunic (2009) have found that employees can more effectively process information when they are free from the control of network ties and the compulsion to volunteer information. In other words, when stars can choose whether they respond to employees, they may be more effective than their peers at processing large amounts of information. This argument is supported by recent research demonstrating that people who feel a diminished sense of power and control have significantly impaired information processing and decision-making faculties (Smith, Jostmann, Galinsky, & Van Dijk, 2008). According to Hallowell (2011), when stars feel as though they have less control over their networks, their ability to make decisions will likely decrease, as will their ability to prioritize information, plan, organize, and implement new ideas. As a result, when stars are required to share more information with others, rather than being able to choose when they share information, they have a decreased ability to cope with high information loads.

In light of these methods for improving star employees' long-term memory, information allocation skills, and motivation to share information, we propose the following.

Proposition 7: Increasing a star's information processing capabilities (increasing working memory, building efficient attention allocation capabilities, and increasing his or her motivation) will increase his or her ability to manage information and prevent overload.

Organizational Conditions

In addition to individual factors that increase a star's ability to manage high information loads, HR professionals can develop organizational processes and systems to help stars ward off overload. For example, efficient search processes can dramatically reduce the number of queries sent to stars. When the stars' colleagues know where to find information in an organization, they are much less likely to engage in costly and ineffective search activities (Walsh & Ungson, 1991). These searches, in which actors indiscriminately query others for help, are called "greedy" searches (Huberman & Adamic, 2004). HR activities that focus on facilitating ef-
ficient searches rather than greedy ones will dramatically reduce the search burden falling on stars.

However, these efforts are likely to be particularly challenging, since the employees engaged in greedy searches are likely to find such searches personally efficient (Adamic, Lukose, Punyani, & Huberman, 2001). Moreover, in affiliatory networks indiscriminate searches “naturally gravitate towards the high degree nodes” (Adamic et al., 2001: 5). We do not suggest here that stars should not be involved in employee searches; efficient search does not mean that actors should not engage stars but, rather, that actors should engage the right stars. Efficient searches may also cause a reduction in the overall network traffic by “intentionally choosing high degree nodes” (Adamic et al., 2001: 5) if these nodes are the right nodes. By increasing employees’ transactive memory, employers can increase effective searches, which allows actors to access information directly and efficiently (Wegner, 1986). Developing transactive memory merely requires knowing what all individuals know across the organization.

Efficient search can also be encouraged by requiring those searching for information to pay search costs. For instance, within the World Bank Group, project leaders have reduced stars’ processing burdens by requiring project teams and managers from other offices to pay for stars’ time. Thus, the “costs” of processing more information are calculated into the organization and into the employee’s work schedule (Morris et al., 2010).

In addition to promoting efficient search, HR professionals may also employ information filtering mechanisms and information technologies (Bawden, 2001; Edmunds & Morris, 2000), which can help stars manage their information burdens. Grant (1996) has argued that processing information for applications requires organizational processes and information systems that enable an individual to actually use the information coming to him or her. These systems codify and simplify information input, capturing knowledge in a storage system that both preserves the information and shifts the burden of sharing it from the stars to the information systems themselves. For example, organizations may capture a star’s valuable information in brief “lessons learned” or some other sort of template that allows users to directly access and apply the star’s knowledge in a comprehensive and readily digestible format (Morris & Oldroyd, 2009). In addition, information systems can work to eliminate fluctuations in the information flow. For instance, companies can decrease information overload (e.g., Snell, Youndt, & Wright, 1996) with the use of specific processes and systems consisting of set routines or guidelines about how information should be received and disseminated (Hall, 1992; Itami, 1987; Subramanian & Youndt, 2005; Walsh & Ungson, 1991). These templates can aid in overcoming the complexities and strains of processing information.

Through information systems and processes, knowledge often becomes decontextualized and articulated in databases and other codified systems; this allows employees to more easily understand which information is helpful in which contexts. In this regard, technology provides employees with an appropriate structural mechanism to receive and share information (Brockbank & Ulrich, 2005; Davenport & Prusak, 1998). For example, Morris et al. (2009) found that codifying knowledge and embedding it into existing operations allows organizations to capture, roll out, maintain, promote, and distribute information to others in the organization. In addition to codifying information, organizations such as McKinsey and Company have transitioned some of their star employees to full-time knowledge-sharing positions. In these positions the star employees’ incentives for information processing and sharing are cleanly aligned with their roles in the organization (Rasiel & Friga, 2002).

HR leaders can further foster trust and meaningful relationships with others within the organization. By doing so they may influence stars’ ability to effectively process information (Groysberg & Lee, 2008). Quality social relations with other stars can actually decrease information overload by altering the cognitive processes of stars. Psychiatrists argue that, aside from individuals’ actual information processing abilities, feelings of information overload also have a neurological basis (Hallowell, 2011). When stars work in environments where trust and respect for one another proliferate, the deep centers of the brain send messages through the pleasure center to the area that assigns resources to the frontal lobes. Even under extreme forms of information overload, this sense of human connection improves the functioning of top-level executives (Hallowell, 2005). In contrast, those who
work in physical isolation feel more stress from information requests (Hallowell, 2005). As a result, we propose the following.

Proposition 8: Organizational processes and systems (effective search, implementing information technologies, specifying information roles, and fostering trust) will increase a star’s ability to prevent information overload.

Structural Conditions

Not only do individual and organizational conditions influence the likelihood that a star will experience overload, but HR professionals may also affect the network’s structural properties to help stars manage their information burdens. One method is to provide support staff to stars within networks; support staff can monitor incoming requests and information solicitations, acting as information gatekeepers. Gatekeepers make initial diagnoses with respect to the urgency or utility of the information and then decide whether the information should be given to a star employee (Shumsky & Pinker, 2003). If a gatekeeper can adequately process and disseminate the information offered or requested, there is no need to send it on to the star. The gatekeeper can also prioritize information so the star will know which information to address first. Gatekeepers further act as quality control mechanisms, ensuring that only valuable information reaches the star. They can also ensure that potentially harmful or misrepresentative information is not presented to the star. As a result, network filters may influence the information load for stars.

Another way to help manage a star’s information burden is by narrowing the breadth of the star’s networks. Recent work in information science has shown that stars’ ability to manage information dramatically increases when these individuals are focused primarily on dense reciprocal interactions. For instance, Adamic and Adar (2002) found that when employees in an HP lab were encouraged to interact only with people known to reciprocate knowledge sharing, a linear, rather than power-law, distribution of information flow emerged. By taking this research into account, HR professionals can help focus the information flow of stars to core, reciprocal communications.

Increasing the density of a star’s network may also play a role in managing the side effects of his or her information flow. For example, scholars suggest that stars who operate in more closed networks within a given organization, or in networks where employees are robustly connected to one another rather than just through the stars or central nodes, will have reduced information burdens. Noting that information quality deteriorates as it moves through only a few central figures, Baker (1984) argued that markets with more dense networks, which are similar to random networks in which everyone is communicating freely and rapidly, result in decreased information burdens for the central few. This improves organizational information sharing on the whole.

HR professionals may also manage the effects of information overload on stars by focusing the benefits of the stars’ social capital on status outcomes rather than on information outcomes. In this respect the quality of a star’s information processing becomes less important to the success of the organization as a whole. For example, Groysberg et al.’s (2008) study of star stock analysts demonstrated how star employees leveraged their status and shared standard stock opinions with all contacts, reducing their need to share unique and customized information. Standardized information may be highly valued by such a network; as a result, status may enable stars to increase their ability to overcome information overload. Hence, we propose the following.

Proposition 9: Shaping network conditions (increasing network filters, network density, and the value of status) will increase a star’s ability to prevent information overload.

Implications

A few key theoretical implications have emerged from our more comprehensive theory of information overload and the high levels of social capital for star employees. First, we developed a theory that links star employees and cognitive constraints, suggesting that information overload is a potential reason why some stars fall. More specifically, we have argued that stars are likely to possess exponentially high levels of social capital, resulting in large
volumes of information flow. Because they have exponentially higher volumes than their peers, stars are more likely to be overloaded with information. When stars are in a state of overload, their decision quality declines and their ability to share information grinds to a halt, crippling the performance of both the stars and the organizations in which they are embedded. In other words, stars’ abundant social capital may, if not carefully managed, cause them to fall.

Second, even though many studies note the high mobility of star employees (e.g., Groysberg, 2010), few have explored the intrinsic reasons why stars leave their organizations. While their high visibility makes stars easy targets of competitive hiring practices, our theory suggests that star employees’ turnover may actually be partially caused by the stars’ desire to avoid information overload. In other words, instead of dealing with information overload, stars may opt to become “shooting stars”—joining forces with competitors.

Third, the implications for HR professionals who seek to increase organizational knowledge sharing may be even more far reaching. For decades, organizations have sought to increase social capital by fostering knowledge, coordination, collaboration, and information flow (e.g., Davenport & Prusak, 1998; Szulanski, 1996; Thompson, 1967). The theory we have developed here places an important caveat on these efforts, highlighting how, because of stars’ propensity for overload, HR professionals may be better served by focusing on alternative strategies. We suggest that these strategies should shift from building links to increasing stars’ information processing capacity, aligning organizational processes and systems to manage stars’ information processing burdens, using technological and human gatekeepers to guard stars’ time and attention, and shaping information networks to ease stars’ responsibilities. These actions may more effectively facilitate information flow in the organizations. Moreover, we suggest a refocusing of managerial attention on stars, who are the key sources of information in organizations. Without them, whole organizational knowledge sharing will likely fail.

Fourth, our theory suggests that individual stars may benefit by preserving the value of robust social capital. Efforts to increase long-term memory in the form of schemas, experience, and other strategies can increase stars’ ability to process information. In addition, HR professionals can emphasize aspects of the stars’ social capital (such as status) that do not impose a cognitive information processing burden. Because the value of status is not constrained by cognition, stars may be better served by leveraging their status than by leveraging their information. Finally, stars may move away from managing structural redundancies in their network—a point emphasized and investigated previously—and begin to manage the processes by which they gain information. Our theoretical model representing these associations is summarized in Figure 6.

Our theory suggests several avenues of future research. For instance, future work could explore how stars’ efforts to build social capital may result in different types of social capital, such as social capital that optimizes status or social capital that optimizes knowledge flow. This research could investigate the performance effects of firms that differentiate between situations in which status or reputation is paramount. It could also investigate situations in which information processing is more important, seeking to deleverage the information flow associated with their stars’ network position. And it could explore the synergies or trade-offs that exist between the two types of social capital, along with their respective advantages.

Future research could also examine specific HR practices that are tied to hiring employees with greater information processing capacities. In addition, researchers could examine practices involving training employees to deal more effectively with information overload and to structure work practices so as to reduce information burdens for star employees. In this arti-

---

8 Prior research has identified an additional limitation to social networks—namely, the information redundancy that is primarily due to structural constraints. Specifically, actors who receive redundant information will yield less value from their social capital than actors who have more unique information flows (Burt, 1997; Granovetter, 1995; Uzzi, 1997). However, since stars’ performance is primarily viewed as the ability to utilize knowledge (rather than control knowledge), and since stars reside in the center (rather than the junction) of networks (Berman, Down, & Hill, 2002; Groysberg et al., 2008), we believe that this type of structural constraint is less central to our discussion of stars and how they maintain their information advantage. Still, while information overload differs from our structural constraints, they may both affect a given star, leading to a type of dual constraint.
cle we have discussed general strategies that organizations can take to help employees manage information overload. We also suggest that some stars may be better suited than others to deal with exponentially high levels of social capital. Future measures could examine the extent to which individuals possess specific capabilities that allow them to deal with high levels of information flow.

Empirical research may help us understand specific HR practices and systems that managers can incorporate to reduce the information burden or increase the information processing capacity of star employees. For example, Dess and Shaw (2001) originally proposed a theoretical link between turnover, social capital, and organizational performance. Shaw and colleagues (2005) later tested and extended that theory by examining social capital on the turnover-performance relationship among thirty-eight restaurant chains. In a similar vein, this research could be extended to include specific HR practices and explanations of how they relate to stars’ ability to deal with uncommonly elevated levels of social capital.

Further research may also address how the theory we have delineated can, at the outset, differentiate star employees from their average colleagues (e.g., Hausknecht et al., 2009). Social network analyses could be conducted on entire employee populations across multiple organizations; these analyses could measure the extent to which star employees are interconnected. Future network analyses could also consider examining stars’ level of information inflow and outflow. Psychological measures could then be used to examine the star employees’ feelings of being overwhelmed. This can be a difficult task, since much of the research on work overload and “time famine” is qualitative (e.g., Berg, Grant, & Johnson, 2010; Perlow, 1999). For researchers to understand the network and organizational factors involved, future studies should span organizations to ensure a sample
variance. Then performance measurements could consider both individual and group performance appraisals and turnover.

Finally, it would be interesting to explore how the incessant overload of stars impacts various aspects of their performance. Does overload cause a decrease generally across all aspects of performance, or does it limit only certain kinds of performance? We posit that status will likely be unaffected by overload, but these differences could be fruitfully examined in future empirical research.

This article has several important limitations and boundary conditions. First, we have focused on the effects of robust social capital involving an “average” star employee. However, important differences likely exist in the characteristics of star employees, particularly regarding their ability to manage information flow. While we have addressed such differences when discussing the management of stars and information overload, other factors may be beneficial to the star but harmful to the organization. For instance, some stars may be highly narcissistic and unwilling to share information. As a result, these employees may act as information black holes, into which vast information is poured with nothing passed on to colleagues. In these cases the information burden that the star employee bears is reduced only by reducing the incoming information processed. In cases such as this, it is possible to alleviate the side effects of social capital while heightening the negative effects on the organization. Future research could expound upon this important nexus between social capital, information overload, and actor motivation.

Similarly, some stars may manage excessive levels of information flow by simply ignoring them. This loss of information may not be due to narcissism but, instead, may simply be a result of a lack of priorities. One factor that allows employees to become stars is their dedication to a specific vision or line of work; star employees, then, may become so absorbed in this work that they lose track of requests for information or forget to ask others for information when they need it. Owing to their singular vision, they may fail to share information with others along the way and so may inadvertently ease their own information burdens.

CONCLUSION

In sum, this article contributes to existing discussions of star employees and how organizations manage them by drawing on the social capital, information processing, and HR management literature. We identify a unique theoretical link between stars, affiliatory network effects, and information overload, calling attention to practices that might result in a subsequent decline in the job performance of star employees. Exploring these unique associations, we present a new understanding of how the information processing constraints of stars may influence information flow and the stars’ performance.

We also refocus scholarly attention from star employees’ structural advantages to the potentially burdensome cognitive constraints of social capital, which underscores the situational mechanism of information flow for star employees. In so doing we attempt to develop a midlevel theory by using an internal analysis of system behavior (Coleman, 1990). We explore how key HR strategies targeted at the individual, organizational, and network structure-wide levels may determine whether stars experience overload within and across organizations. Because of the curvilinear relationship between information overload and performance, stars must carefully manage the information flow resulting from their social capital, rather than merely focus on increasing their social capital. Thus, the development of this new theory of information overload for stars highlights the implicit tension between the stars’ preferred social structures—the ones that grant information resources—and their ability to utilize these resources for individual and organizational benefit.

REFERENCES


Hwang, Y., Kettinger, W. J., & Yi, M. Y. 2010. Understanding information behavior and the relationship to job perfor-


